121. A Convenient Procedure for the Synthesis of 2,3,4,6-Tetra-O-benzyl-dgluconolactam and D-Nojirilactam
by Roland Hoos, Andrew B. Naughton, and Andrea Vasella* ')
Organisch-Chemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(10.V.93)

Abstract

Swern oxidation of 2,3,4,6-tetra-O-benzyl-D-glucose (1) followed by ammonolysis gave the crystalline amide 3 which was oxidized (DMSO/pyridine $\cdot \mathrm{SO}_{3}$) to yield the oxo-amide 4 and the hydroxy-lactams 5 and 6. Cyclization of 4 to the very slowly equilibrating 5 and 6 was completed by treatment with AcOH in CHCl_{3}. The configuration of the hydroxy-lactams was assigned on the basis of NOEs. Reduction $\left(\mathrm{Et}_{3} \mathrm{SiH} / \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ of the hydroxy-lactams either individually or as a mixture led to 2,3,4,6-tetra- O-benzyl-d-gluconolactam (7). The procedure, based upon modifications of a patent, does not require chromatography; the overall yield of 7 from 1 is 43%. Hydrogenolysis of 7 gave d-nojirilactam (8); benzylation led to the known pentabenzyl-d-nojirilactam (9) and to the unsaturated lactam 10.

For the preparation of new inhibitors of β-glucosidases, we required a facile access to large amounts of 2,3,4,6-tetra- O-benzyl-d-gluconolactam (7; O-benzylated nojirilactam). Its synthesis from 2 via 3-5 according to the Scheme has been described in a Japanese patent [1]. Essentially the same route has been reported very recently by Pandit et al. [2]. The patent procedure specifies $\mathrm{DMSO} / \mathrm{Ac}_{2} \mathrm{O}$ for the oxidation of the amide 3, and the same conditions were applied by Pandit et al. In our hands, this reaction was only halfcomplete after 24 h , and longer reaction times led to unidentified side-products. The reduction of the hydroxy-lactam 5 by NaBH_{4} in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, as described by the chemists of Nippon Shinyaku [1], gave a mixture of 7 and the corresponding l-idoisomer in a ratio of ca. 6:1, while Pandit et al. obtained 7 through treatment of the oxoamide 4 with $\mathrm{HCO}_{2} \mathrm{H}$ and diastereoselective reduction with NaCNBH_{3}.

Considering the potential of 7 as an intermediate, we report complete experimental details for its synthesis, involving an advantageous method for the oxidation of $\mathbf{3}$, a highyielding and fully diastereoselective alternative for the reduction of $\mathbf{5 , 6}$, and mixtures of both to 7 , the hydrogenolysis of $\mathbf{7}$ to 8 [3], and the N-benzylation of 7 to yield 9 [4] and $\mathbf{1 0}$.

[^0]Scheme

4

The oxidation of 2,3,4,6-tetra- O-benzyl-d-glucose (1) [5] to the lactone 2 by a number of methods is well known [6] [7]. We found the Swern procedure [8] to be the most convenient one on a $70-\mathrm{g}$ scale. The lactone $\mathbf{2}$ is quite labile, and as much as half of it can be lost by silica gel chromatography. The crude lactone was, however, sufficiently pure. It was treated with NH_{3} in dry $\mathrm{Et}_{2} \mathrm{O}$ [1] under reflux $\left(-33^{\circ}\right)$ to yield the readily crystallizing amide 3. Overall yields between 70 and 81% were realized for the oxidation and the ammonolysis. Pandit et al. [2] indicate a yield of 86% for the ammonolysis of 2, without specifying the scale of the reaction.

Good results for the oxidation of $\mathbf{3}$ on a large scale were realized with DMSO in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ and pyridine $\cdot \mathrm{SO}_{3}$ complex [10]. The oxo-amide 4 [1] [2] was observed by TLC. It cyclizes readily and was not obtained pure. Cyclization is catalyzed by AcOH in $\mathrm{CHCl}_{3}[1]$. Under these conditions, the process of cyclization is completed within three to four days, leading to 5 and $\mathbf{6}$ in a ratio ranging from 66:33 to 75:25. Equilibration of 5 and 6 proceeds slowly. Thus, under the conditions of the cyclization, 5 is transformed into a 84:16 mixture of $\mathbf{5}$ and $\mathbf{6}$ within two months, while $\mathbf{6}$ leads to a $72: 28$ mixture of the two epimers within the same time. Equilibration was interrupted at this stage due to the appearance of side products.

Treatment of 5 with $\mathrm{Et}_{3} \mathrm{SiH}$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ [11] [12] in $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 0° led to the rapid formation of 7 , which was isolated in 98% yield. Similarly, $\mathbf{6}$ led to the same product in the same yield, reflecting the strong stereoelectronic control [13]. Deoxygenation of a crude $2: 1$ mixture of 5 and 6 on a 43-g scale gave crystalline $7(71 \%)$. The overall yield of 7 from 70.4 g of $\mathbf{1}$ was 43%. The lactam 7 was identified on the basis of its physical [1] [2] and spectral data. Hydrogenolysis of 7 [14] gave d-nojirilactam (8, 46\%, after crystallization). N-Benzylation of 7 led to pentabenzyl-D-nojirilactam ($9,41 \%$) [4] and to the unsaturated lactam $10(44 \%)$, illustrating a facile β-elimination under these conditions ($\mathrm{BnCl}, \mathrm{DMSO}, \mathrm{KOH}$) [4].

The optical rotation and the ${ }^{1} \mathrm{H}$-NMR data of 2 match the reported ones [6] [16]. The ${ }^{1} \mathrm{H}$-NMR data of $\mathbf{3}$ agree with those reported by Dax et al. [9], except that we find $J(3,4)=$ 5.5 rather than 7.2 Hz .

Correct elemental analyses were obtained for 5 and 6 . The melting point and the optical rotation of 5 are slightly lower than those reported [1]. The IR spectrum of 5 shows OH, NH, and carbonyl bands at 3560,3380 , and $1695 \mathrm{~cm}^{-1}$, respectively. A comparison of the ${ }^{13} \mathrm{C}$-NMR spectrum of 5 with the one of $\mathbf{3}$ shows an additional s at 81.87 ppm with concomitant loss of a d. The spectral data of $\mathbf{6}$ parallel those of $\mathbf{5}$. The d at 3.76 ppm of $\mathbf{6}$ $\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right)$ is assigned to $\mathrm{H}-\mathrm{C}(5)$; it shows a NOE of 4.5% upon irradiation at 6.09 ppm ($\mathrm{HO}-\mathrm{C}(6)$). A NOE of 2.6% is observed for the $\mathrm{H}-\mathrm{C}(4) t$ at 4.12 ppm of $5\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right)$ upon irradiation at $5.73 \mathrm{ppm}(\mathrm{HO}-\mathrm{C}(6))$. These effects evidence the $\mathrm{D}-\mathrm{g}$ luco-configuration of 5 and the L-ido-configuration of 6 .

The melting point and the optical rotation of 7 were almost identical to the reported values [1] [2]. The IR spectrum is characterized by an NH band at 3205 and a carbonyl band at $1685 \mathrm{~cm}^{-1}$ corresponding to a broad $\mathrm{NH} s$ at 5.91 ppm in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, and a carbonyl s at 170.50 ppm in the ${ }^{13} \mathrm{C}$-NMR spectrum. $\mathrm{CI}-\mathrm{MS}\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ shows the $[M+$ $\mathrm{H}]^{+}$base peak at $m / z 539$. The ${ }^{13} \mathrm{C}$-NMR data of 8 match the reported values [14], as do the melting point and the optical rotation [2] [3] [14]. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 9 shows strongly overlapping signals, and is in keeping with the reported data [4]. Complete resolution was observed when using $\mathrm{C}_{6} \mathrm{D}_{6}$ as solvent. The two d at 4.06 and $5.36 \mathrm{ppm}(J$ $=14.9 \mathrm{~Hz}$) and the absence of the $\mathrm{NH} s$ evidence the N-benzylation. The ${ }^{13} \mathrm{C}$-NMR spectrum shows a t at 77.07 rather than at 60.3 ppm [4]. We also observed a d at 74.50 ppm rather than a $t[4]$. All other ${ }^{13} \mathrm{C}$-NMR resonances match the reported values. The same is true for the MS and the optical rotation. The IR spectrum of $\mathbf{1 0}$ shows an olefin band at $1670 \mathrm{~cm}^{-1}$ and a carbonyl band at $1635 \mathrm{~cm}^{-1}$, in keeping with an α, β-unsaturated carbonyl function. The MS and the elemental analysis of $\mathbf{1 0}$ agree with the structure given in the Scheme. Accordingly, the ${ }^{1} \mathrm{H}$-NMR spectrum shows signals of four PhCH_{2} groups, but none for $\mathrm{H}-\mathrm{C}(3)$, and a signal for $\mathrm{H}-\mathrm{C}(4)$ which is shifted downfield, as compared to 9 . The ${ }^{13} \mathrm{C}$-NMR spectrum confirms the presence of four PhCH_{2} groups, and shows two olefinic signals at 149.16 and 101.76 ppm for $\mathrm{C}(3)$ and $\mathrm{C}(4)$, respectively.

Experimental Part

General. Solvents, except for DMSO, were distilled before use. DMSO was obtained from freshly opened bottles and stored over 4- \AA molecular sieves. Reactions were run under Ar. TLC: Merck silica gel $60 F_{254}$ plates; detection by heating with 1:1 I_{2} soln. $/ 20 \% \mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{I}_{2}\right.$ soln.: 10 g of $\mathrm{I}_{2}, 100 \mathrm{~g}$ of KI, $1000 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$) or with mostain [15]. Flash chromatography (FC): silica gel (Merck 60; 0.040-0.063 mm). M.p.: uncorrected. Except where specifically noted, ${ }^{\dagger} \mathrm{H}$-NMR spectra were recorded at 300 MHz , and ${ }^{3} \mathrm{C}$-NMR spectra at 50 MHz . Chemical shifts δ in ppm and coupling constants J in Hz .

2,3,4,6-Tetra-O-benzyl-D-gluconolactone (2). Freshly distilled oxalyl chloride ($25.0 \mathrm{ml}, 291 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.101) was treated at -60° with dry DMSO ($44.4 \mathrm{ml}, 625 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(800 \mathrm{ml}$; ca. 30 min), and then with a soln. of 2,3,4,6-tetra-O-benzyl-D-glucopyranose ($1 ; 70.4 \mathrm{~g}, 130.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($700 \mathrm{ml} \mathrm{)} \mathrm{and}$ DMSO (10 ml), keeping the temp. below -50° (ca .90 min). The mixture was warmed to -40° within 15 min , to -10° within 20 min , stirred for 10 min at -10°, and cooled to $-60^{\circ} . \mathrm{Et}_{3} \mathrm{~N}(109 \mathrm{ml}, 780 \mathrm{mmol})$ was added over 10 min . The mixture was warmed to r. t. (1 h), and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 1 \mathrm{l})$ and brine (1 1). The org. layer was dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue (76.4 g) was used for the next step. A small portion of 2, resulting from a parallel experiment, was purified by FC (hexane/ $\mathrm{Et}_{2} \mathrm{O} 2: 1$). Clear oil. $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 1: 1\right) 0.54 .[\alpha]_{\mathrm{D}}^{25}=$ $+76.7\left(c=1.35, \mathrm{CHCl}_{3} ;[6]:[\alpha]_{\mathrm{D}}^{20}=+79.9\left(\mathrm{CHCl}_{3}\right),[16]:[\alpha]_{\mathrm{D}}=+73.2\left(\mathrm{CHCl}_{3}\right)\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3090 w, 3070 w$, $3035 \mathrm{w}, 3000 \mathrm{w}, 2920 \mathrm{~m}, 2875 \mathrm{~m}, 1755 \mathrm{~s}, 1495 \mathrm{w}, 1450 \mathrm{~m}, 1360 \mathrm{~m}, 1160 \mathrm{~m}$ (sh), 1120 s (sh), $1100 \mathrm{~s}, 1070 \mathrm{~s}, 1030 \mathrm{~m}$, $1000 \mathrm{~m}(\mathrm{sh}), 915 w, 865 w, 690 \mathrm{~m}, 665 w(\mathrm{sh}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 3.68(d d, J=11.0,3.3, \mathrm{H}-\mathrm{C}(6)$); 3.74 $\left(d d, J=11.0,2.4, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.92(t, J=6.4, \mathrm{H}-\mathrm{C}(3)) ; 3.97(t, J=6.8, \mathrm{H}-\mathrm{C}(4)) ; 4.13(d, J=6.5, \mathrm{H}-\mathrm{C}(2)) ; 4.45$ (br. $d t, J \approx 8.2,2.7, \mathrm{H}-\mathrm{C}(5)) ; 4.49(d, J=11.9), 4.58\left(d, J=11.9, \mathrm{PhCH}_{2}\right) ; 4.53(d, J=11.3), 4.61(d, J=11.3$, $\left.\mathrm{PhCH}_{2}\right) ; 4.72(d, J=11.1), 4.74\left(d, J=11.1, \mathrm{PhCH}_{2}\right) ; 4.65(d, J=11.4), 5.16\left(d, J=11.4, \mathrm{PhCH}_{2}\right) ; 7.18-7.21(m$, 2 arom. H); 7.25-7.41 ($\mathrm{m}, 18$ arom. H). CI-MS $\left(\mathrm{NH}_{3}\right): 558$ (6), 557 (29), 556 (100, [$\mathrm{M}+\mathrm{NH}_{4}{ }^{+}$), 539 (9, $\left.[M+\mathbf{H}]^{+}\right)$.

2,3,4,6-Tetra-O-benzyl-D-gluconamide (3). A soln. of 2 (76.4 g , crude) in dry $\mathrm{Et}_{2} \mathrm{O}$ (1.5 l) was added within 20 min to condensed ammonia (100 ml) at -60°. The cooling bath was removed, the reaction flask fitted with a cold finger cooling trap, and the soln. kept at reflux for 45 min . After removal of the cooling trap, NH_{3} and $\mathrm{Et}_{2} \mathrm{O}$ were evaporated. The residue was treated with $\mathrm{Et}_{2} \mathrm{O}(800 \mathrm{ml})$, and the supernatant was cooled to 5°, leading to a yellowish precipitate. Filtration and recrystallization at 5° gave white $3(39.4 \mathrm{~g})$. Evaporation and filtration through silica gel (hexane/Et O 1:8) of the combined mother liquors afforded an additional crop of $3(11.1 \mathrm{~g})$ as a colorless oil. Total yield: 70\% from 1. M.p. 89-90 ${ }^{\circ}$. R_{f} (hexane/AcOEt 2:3) 0.16. $[\alpha]_{\mathrm{D}}^{21}=+24.5(c=0.79$, CHCl_{3}; [9]: $[\alpha]_{\mathrm{D}}^{20}=+18.7\left(\mathrm{CHCl}_{3}\right)$). IR (KBr): $3560 \mathrm{~s}, 3390 \mathrm{~s}, 3200 \mathrm{~m}, 3060 \mathrm{w}, 3030 \mathrm{w}, 2920 \mathrm{w}$ (sh), 2880 w (sh), $2830 w, 1640 s$ (sh), $1560 w, 1540 w, 1500 \mathrm{~m}, 1475 w, 1450 \mathrm{~m}$ (sh), $1410 \mathrm{w}, 1400 \mathrm{w}, 1390 \mathrm{w}, 1360 \mathrm{~m}, 1340 \mathrm{w}, 1320 \mathrm{w}$, $1280 \mathrm{~m}, 1270 \mathrm{w}, 1250 \mathrm{w}, 1210 \mathrm{~m}$ (sh), $1180 \mathrm{w}, 1120 \mathrm{~s}(\mathrm{sh}), 1100 \mathrm{~m}, 1070 \mathrm{~m}$ (sh), $1050 \mathrm{~s}, 1030 \mathrm{~m}, 1000 \mathrm{~m}, 940 \mathrm{w}, 900 \mathrm{w}$ (sh), $850 \mathrm{w}, 780 \mathrm{w}, 750 \mathrm{~m}, 730 \mathrm{~s}, 700 \mathrm{~s}, 650 \mathrm{w}, 620 \mathrm{w}$ (sh), $610 \mathrm{w} . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right): 557(8), 556\left(23,[M+\mathrm{H}]^{+}\right), 450(7)$, 449 (23), $448\left(100,[M-\mathrm{BnOH}+\mathrm{H}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{NO}_{6}(555.67)$: C 73.49, H 6.71, N 2.52; found: C 73.57, H 6.54, N 2.54.
(3R,4S,5S,6S)-6-Hydroxy-3,4,5-tris(benzyloxy)-6-[(benzyloxy)methyl]piperidin-2-one (5) and (3R,4S,5S,6R)-6-Hydroxy-3,4,5-tris(benzyloxy)-6-[(benzyloxy)methyl]piperidin-2-one (6). a) A stirred soln. of 3 ($684.3 \mathrm{mg}, 1.23 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(1.37 \mathrm{ml}, 9.83 \mathrm{mmol})$ in DMSO $(6 \mathrm{ml})$ was treated with a soln. of pyridine $\cdot \mathrm{SO}_{3}(1.176 \mathrm{~g}, 7.39 \mathrm{mmol})$ in DMSO (6 ml ; kept for 15 min at $\mathrm{r} . \mathrm{t}$.) at $\leq 25^{\circ}$ for 4 h . The soln. was poured into $\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{H}_{2} \mathrm{O} 20: 3$ (230 ml). Separation of the org. layer, extraction of the aq. layer with $\mathrm{C}_{6} \mathrm{H}_{6}$, drying $\left(\mathrm{MgSO}_{4}\right)$ of the combined org. layers, filtration, and evaporation gave a thick oil which was dried i.v. for 3 h . The stirred soln. of the residue in $\mathrm{CHCl}_{3}(6.8 \mathrm{ml})$ was treated with $\mathrm{AcOH}(0.34 \mathrm{ml}, 5.9 \mathrm{mmol})$ for 3 d at r.t. Sat. aq. NaHCO_{3} soln. (2 ml) was added, followed by $\mathrm{CHCl}_{3}(5 \mathrm{ml})$. The org. layer was separated and dried (MgSO_{4}). Filtration, evaporation, and FC (hexane/AcOEt 3:2) gave 5 ($345 \mathrm{mg}, 51 \%$) and 6 ($191 \mathrm{mg}, 28 \%$). Compound 5 was crystallized from $\mathrm{Et}_{2} \mathrm{O}$ /hexane.
b) Similarly, a soln. of pyridine $\cdot \mathrm{SO}_{3}(80.0 \mathrm{~g}, 502 \mathrm{mmol})$ in DMSO $(350 \mathrm{ml})$ was added dropwise within 45 min to a soln. of $3(47.0 \mathrm{~g}, 84.6 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(95.0 \mathrm{ml}, 682 \mathrm{mmol})$ in DMSO $(350 \mathrm{ml})$. Toluene was used for the extraction. The crude $2: 1$ mixture ('H-NMR) of $5 / 6$ (44.0 g) was used for the next step.

Data of 5: M.p. 103-104.5 ([1]: 108.5-109 $). R_{\mathrm{f}}$ (hexane/AcOEt 1:1) 0.20. $[\alpha]_{\mathrm{D}}^{25}=+74.2(c=1.03, \mathrm{EtOH} ;$ [1]: $\left.[\alpha]_{\mathrm{D}}^{24}=+75.6(\mathrm{EtOH})\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3560 w, 3520 w, 3380 w, 3100 w, 3080 w, 3040 w, 3010 w, 2950 \mathrm{~m}, 2875 m$, $1695 s, 1610 \mathrm{w}, 1570 \mathrm{w}, 1500 \mathrm{w}, 1455 \mathrm{~m}, 1360 \mathrm{~m}, 1330 \mathrm{~m}, 1290 \mathrm{w}, 1230 \mathrm{~m}(\mathrm{sh}), 1180 \mathrm{~s}, 1100 \mathrm{~s}(\mathrm{sh}), 1070 \mathrm{~s}, 1030 \mathrm{~m}$, $915 w, 865 w, 695 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 3.20(d, J=9.5), 3.28\left(d, J=9.5, \mathrm{CH}_{2}-\mathrm{C}(6)\right) ; 3.30(s, \mathrm{OH}) ; 3.69(d, J=$
$9.5, \mathrm{H}-\mathrm{C}(5)) ; 3.96(d, J=8.5, \mathrm{H}-\mathrm{C}(3)) ; 4.17(d d, J=9.4,8.4, \mathrm{H}-\mathrm{C}(4)) ; 4.38-4.45\left(m, \mathrm{PhCH}_{2}\right) ; 4.70(d, J=10.9)$, $4.82\left(d, J=10.9, \mathrm{PhCH}_{2}\right) ; 4.73(d, J=11.1), 4.85\left(d, J=11.1, \mathrm{PhCH}_{2}\right) ; 4.49(d, J=11.1), 5.12(d, J=11.1$, $\left.\mathrm{PhCH}_{2}\right) ; 6.41(\mathrm{~s}, \mathrm{NH}) ; 7.18-7.45\left(\mathrm{~m}, 20\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 72.56(t) ; 73.55(t) ; 74.68(t) ; 75.17(t)$; $75.33(t) ; 77.31(d) ; 79.38(d, 2 \mathrm{C}) ; 81.87(s) ; 127.70-128.53$ (several d); 136.95 (s); $137.27(s) ; 137.77$ ($s)$; $138.15(s) ; 171.29(s) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right): 571\left(5,\left[M+\mathrm{NH}_{4}\right]^{+}\right), 554\left(33,[M+\mathrm{H}]^{+}\right), 537(14), 536(39), 486(5), 446$ (9), 430 (9), 428 (100), 420 (9), 338 (7), 320 (7), 265 (14), 262 (30), 230 (21), 108 (26). Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{NO}_{6}$ (553.65): C 73.76, H 6.37, N 2.53 ; found: C 73.79, H $6.52, \mathrm{~N} 2.55$.

Data of 6: Oil. R_{f} (hexane/AcOEt 1:1) 0.08. $[\alpha]_{\mathrm{D}}^{25}=+8.1\left(c=0.54, \mathrm{EtOH} ;[1]:[\alpha]_{\mathrm{D}}^{24}=+13.8(\mathrm{EtOH})\right.$). IR $\left(\mathrm{CHCl}_{3}\right): 3550 \mathrm{~m}, 3400 \mathrm{~m}, 3380 \mathrm{~m}$ (sh), $3080 \mathrm{w}, 3060 \mathrm{w}, 3030 \mathrm{w}, 3005 \mathrm{~m}, 2920 \mathrm{~m}, 2870 \mathrm{~m}, 2000 \mathrm{w}, 1950 \mathrm{w}, 1870 \mathrm{w}$, $1810 w, 1690 \mathrm{~s}, 1610 \mathrm{w}, 1590 \mathrm{w}, 1540 \mathrm{w}, 1500 \mathrm{~m}, 1455 \mathrm{~s}, 1400 \mathrm{~m}$ (sh), $1355 \mathrm{~m}, 1315 \mathrm{~m}, 1255 \mathrm{w}, 1160 \mathrm{~m}(\mathrm{sh}), 1100 \mathrm{~s}$, $1075 s(\mathrm{sh}), 1030 \mathrm{~m}, 1010 \mathrm{~m}, 965 \mathrm{w}, 910 \mathrm{~m}, 860 \mathrm{w}, 820 \mathrm{w}, 700 \mathrm{~s}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 3.51(d, J=9.2), 3.63(d, J=9.2$, $\left.\mathrm{CH}_{2}-\mathrm{C}(6)\right) ; 3.71(s, \mathrm{OH}) ; 4.16(d, J=4.2, \mathrm{H}-\mathrm{C}(5)) ; 3.90(d d, J=7.1,4.1, \mathrm{H}-\mathrm{C}(4)) ; 4.34(d, J=6.7, \mathrm{H}-\mathrm{C}(3))$; $\left.4.39(d, J=11.6), 4.62\left(d, J=11.6, \mathrm{PhCH}_{2}\right) ; 4.55(d, J=11.5), 4.73\left(d, J=11.5, \mathrm{PhCH}_{2}\right) ; 4.55(s, \mathrm{PhCH})_{2}\right) ; 4.72$ $(d, J=11.3), 5.12\left(d, J=11.3, \mathrm{PhCH}_{2}\right) ; 6.40(s, \mathrm{NH}) ; 7.12-7.44(\mathrm{~m}, 20 \mathrm{arom} . \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 72.65(t)$; $73.01(t) ; 73.59(t, 2 \mathrm{C}) ; 74.11(t) ; 78.50(d) ; 79.76(d) ; 80.54$ (d); $83.41(s) ; 127.38-128.48$ (several d); 137.07 $(s) ; 137.38(s) ; 137.80(s) ; 137.92(s) ; 170.94(s) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right): 571\left(5,\left[M+\mathrm{NH}_{4}\right]^{+}\right), 555(17), 554(48,[M+$ $\left.\mathrm{H}]^{+}\right), 537(13), 536(38), 446(14), 430(6), 429(28), 428(100), 355(7), 338(10), 320(7), 265(12), 248(6), 230$ (26), 198 (12), 140 (7), 108 (36), 91 (8). Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{NO}_{5}$ (553.65): C 73.76, H 6.37, N 2.53 ; found: C 73.46, H 6.41, N 2.50 .
(3R,4S,5R,6R)-3,4,5-Tris(benzyloxy)-6-[(benzyloxy)methyl]piperidin-2-one (7). a) From Crude 5/6: $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(49.5 \mathrm{mI}, 394 \mathrm{mmol})$ was added at 0° to a soln. of $\mathrm{Et}_{3} \mathrm{SiH}(62.8 \mathrm{ml}, 394 \mathrm{mmol})$ in 1.51 of dry MeCN . Stirring was continued for 5 min . A soln. of a crude $2: 1$ mixture $5 / 6(43.57 \mathrm{~g}, 78.69 \mathrm{mmol})$ in cooled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5$ 1) was added over a period of 1.3 h , while the temp, was kept below 3°. The mixture was stirred for 10 min , quenched by addn. of 300 ml sat. aq. NaHCO_{3} soln., diluted with. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{ml})$, and extracted. The aq. phase was further extracted with 500 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined org. phases were dried (MgSO_{4}), filtered, and taken to dryness. The solid residue was recrystallized in boiling MeOH to yield colorless needles (29.0 g ; m.p. 103$104.5^{\circ}$). A second less pure crop was obtained from the mother liquor ($1.2 \mathrm{~g}, \mathrm{~m} . \mathrm{p} .102-104^{\circ}$). Recrystallization led to a sample with only slightly higher m.p. Total yield: $30.2 \mathrm{~g}(71 \%)$.
b) From Pure 5: Similarly, a pure sample of $5(136.2 \mathrm{mg}, 0.246 \mathrm{mmol})$ gave $130.0 \mathrm{mg} 7(98 \%)$.
c) From Pure 6: Similarly, a pure sample of $6(61.9 \mathrm{mg}, 0.112 \mathrm{mmol})$ gave $59.0 \mathrm{mg} 7(98 \%)$. Mixed m.p. of the samples obtained according to b and c was undepressed.

Data of 7: M.p. 104.2-104.6 ${ }^{\circ}\left([1]: 100.5-102^{\circ}\right.$; [2]: $\left.100-102^{\circ}\right) \cdot R_{\mathrm{f}}\left(\right.$ hexane $^{2} \mathrm{Et}_{2} \mathrm{O} \mathrm{1:3)} 0.36 .[\alpha]_{\mathrm{D}}^{25}=+102.8(\mathrm{c}$ $\left.=0.67, \mathrm{CHCl}_{3} ;[2]:[\alpha]_{\mathrm{D}}=+105.5\left(\mathrm{CHCl}_{3}\right)\right) . \mathrm{IR}(\mathrm{KBr}): 3205 m, 3120 w, 3060 w, 3020 w, 2940 w, 2905 w, 2870 w$, $1685 s, 1560 w, 1540 w, 1500 w, 1455 m, 1410 w, 1385 w, 1365 w, 1350 w, 1320 m, 1280 w, 1260 w, 1235 w, 1210 w$, $1175 w, 1130 \mathrm{~m}, 1105 \mathrm{~m}, 1070 \mathrm{~m}, 1030 \mathrm{w}, 1015 \mathrm{w}, 990 \mathrm{w}, 940 \mathrm{w}, 910 \mathrm{w}, 805 \mathrm{w},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.26(t d$, $J=8.1,1.5, \mathrm{H}-\mathrm{C}(5)) ; 3.50-3.62\left(m, 3 \mathrm{H}, \mathrm{H}-\mathrm{C}(6), \mathrm{CH}_{2}-\mathrm{C}(6)\right) ; 3.91(t, J=8.1, \mathrm{H}-\mathrm{C}(4)) ; 4.00(d, J=8.0, \mathrm{H}-\mathrm{C}(3))$; $4.42(d, J=12.0), 4.49\left(d, J=12.0, \mathrm{PhCH}_{2}\right) ; 4.77(d, J=11.2), 4.84\left(d, J=11.2, \mathrm{PhCH}_{2}\right) ; 4.73(d, J=11.1), 4.86$ $\left(d, J=11.1, \mathrm{PhCH}_{2}\right) ; 4.49(d, J=11.2), 5.18\left(d, J=11.2, \mathrm{PhCH}_{2}\right) ; 5.91(s, \mathrm{NH}) ; 7.18-7.20(\mathrm{~m}, 2$ arom. H$) ; 7.27-$ 7.43 ($m, 18$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 53.79(d) ; 69.79(t) ; 73.23(t) ; 74.46(t, 2 \mathrm{C}) ; 74.57(t) ; 77.00(d) ; 78.72$ (d); $82.24(d) ; 127.66-128.42$ (several d); $137.25(s) ; 137.54(s) ; 137.78(s) ; 137.97(s) ; 170.50(s)$. Cl-MS $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$; 541 (7), $540(37), 539\left(100,[M+\mathrm{H}]^{+}\right), 181(12), 140(7), 91$ (35). Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{NO}_{5}(537.66)$: C 75.95, H 6.56, N 2.61 ; found: C 75.71, H 6.73, N 2.71 .
(3R,4S,5R,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)piperidin-2-one (8; d-Nojirilactam). Pd-black (ca. 150 mg) was suspended in degassed $\mathrm{EtOH}(70 \mathrm{ml})$, and treated with H_{2} (5 bar) for 5 h . Then, $7(1.0 \mathrm{~g}, 1.86 \mathrm{mmol})$ was added and hydrogenated at 5 bar for 40 h . Filtration of the mixture, washing with MeOH (10 ml), and evaporation gave only traces of 8 . Washing the mixture with $\mathrm{H}_{2} \mathrm{O}$, however, afforded, after evaporation, 310 mg of crude 8 as a crystalline solid which was recrystallized from $\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}$ to yield 150 mg of 8 (46%). M.p. 206$207^{\circ}$ (dec.; [3]: 203-205 ${ }^{\circ}$ (dec.); [2]: 197-199 ; [14]: 204-205 ${ }^{\circ}$. R_{f} ($\mathrm{AcOEt} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 7: 2: 1$) 0.14. [$\left.\alpha\right]_{\mathrm{D}}^{22}=$ $+64.2\left(c=1.09, \mathrm{H}_{2} \mathrm{O} ;[3]:[\alpha]_{\mathrm{D}}^{22}=+63\left(\mathrm{H}_{2} \mathrm{O}\right) ;[2]:[\alpha]_{\mathrm{D}}=+63 ;[14]:[\alpha]_{\mathrm{D}}^{20}=57\left(c=0.63, \mathrm{H}_{2} \mathrm{O}\right)\right)$. IR (KBr): 3420s (br.), $3360 s$ (br.), $3250 s$ (br.), $3180 s$ (br.), $3040 w$ (sh), $2940 w, 2880 w, 1660 s, 1645 s, 1560 w, 1540 w, 1490 \mathrm{~m}$, $1470 \mathrm{~m}, 1450 \mathrm{~m}, 1410 \mathrm{~m}, 1385 \mathrm{~s}, 1350 \mathrm{~s}, 1335 \mathrm{~m}, 1320 \mathrm{~s}, 1290 \mathrm{w}, 1260 \mathrm{~m}, 1240 \mathrm{w}, 1210 \mathrm{w}, 1160 \mathrm{~s}, 1130 \mathrm{~s}, 1080 \mathrm{~s}$, $1070 \mathrm{~s}, 1050 \mathrm{~s}, 1035 \mathrm{~s}, 990 \mathrm{~m}, 950 \mathrm{~m}, 885 \mathrm{~m}, 860 \mathrm{~m}, 710 \mathrm{~m}, 680 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 2.98-3.02(\mathrm{~m}, \mathrm{H}-\mathrm{C}(6))$; 3.33-3.44 ($m, \mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(5), \mathrm{CH}-\mathrm{C}(6)$); $3.52(d d, J=9.1,4.2, \mathrm{H}-\mathrm{C}(3)) ; 3.57(d d d, J=11.1,5.5,2.8$, $\mathrm{CH}-\mathrm{C}(6)) ; 4.68(t, J=5.7, \mathrm{OH}) ; 5.01(d, J=4.3, \mathrm{OH}) ; 5.13(d, J=4.8, \mathrm{OH}) ; 5.18(d, J=4.1, \mathrm{HO}-\mathrm{C}(3)) ; 7.20(s$,

NH). Cl-MS $\left(\mathrm{NH}_{3}\right): 196(8), 195\left(100,\left[M+\mathrm{NH}_{4}\right]^{+}\right), 178\left(25,[M+\mathrm{H}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{6} \mathrm{H}_{41} \mathrm{NO}_{5}(177.15)$: C 40.68, H 6.26, N 7.91; found: C 40.81, H 6.10, N 7.64.
(3R,4S,5R,6R)-N-Benzyl-3,4,5-tris(benzyloxy)-6-[(benzyloxy)methyljpiperidin-2-one (9; Pentabenzyl-Dnojirilactam) and (5R,6R)-N-Benzyl-3,5-bis(benzyloxy)-6-[(benzyloxy)methyl]-1,2,5,6-tetrahydropyridin-2-one (10). The lactam $7(105.0 \mathrm{mg}, 0.195 \mathrm{mmol})$ was added to a stirred suspension of freshly pulverized $\mathrm{KOH}(21.9$ mg, 0.39 mmol$)$ in dry DMSO (3.9 ml) at r. t., treated with $\mathrm{BnCl}(90 \mathrm{ml}, 0.781 \mathrm{mmol})$ for 5 min , and poured into a mixture of sat. aq. NaHCO_{3} soln. (2 ml) and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$. The org. layer was separated, and the aq. layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{ml})$ and $\mathrm{AcOEt}(10 \mathrm{ml})$. The combined org. layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. FC of the residue yielded $9(50.6 \mathrm{mg}, 41 \%)$ and $10(44.9 \mathrm{mg}, 44 \%)$.

Data of 9: Syrup. R_{f} (hexane/Et O 1:2) $0.63 .[\alpha]_{\mathrm{D}}^{25}=+67.6\left(c=0.58, \mathrm{CHCl}_{3} ;[4]:[\alpha]_{\mathrm{D}}^{20}=+62.0\left(\mathrm{CHCl}_{3}\right)\right)$. IR (film): $3060 \mathrm{~m}, 3030 \mathrm{~m}, 2920 \mathrm{~m}, 2860 \mathrm{~m}, 1950 \mathrm{w}, 1875 \mathrm{w}, 1810 \mathrm{w}, 1725 \mathrm{w}, 1670 \mathrm{~s}, 1605 \mathrm{w}, 1590 \mathrm{w}, 1500 \mathrm{~m}, 1455 \mathrm{~s}$, $1390 w, 1360 \mathrm{~m}, 1350 \mathrm{w}(\mathrm{sh}), 1310 \mathrm{w}, 1250 \mathrm{w}, 1210 \mathrm{~m}, 1180 \mathrm{w}, 1095 \mathrm{~s}, 1075 \mathrm{~s}$ (sh), $1030 \mathrm{~m}, 1005 \mathrm{w}, 910 \mathrm{w}, 845 \mathrm{w}$, $820 w, 740 s, 700 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 3.17(d d, J=9.9,4.3, \mathrm{CH}-\mathrm{C}(6)) ; 3.28(d d, J=9.9,5.4, \mathrm{CH}-\mathrm{C}(6))$; $3.48-3.52(m, \mathrm{H}-\mathrm{C}(6)) ; 3.87(d d, J=9.9,5.4, \mathrm{H}-\mathrm{C}(5)) ; 3.98(d d, J=8.3,5.4, \mathrm{H}-\mathrm{C}(4)) ; 4.04(d, J \approx 14.9), 5.36(d$, $\left.\left.J=14.9, \mathrm{PhCH}_{2}\right) ; 4.06\left(s, \mathrm{PhCH}_{2}\right) ; 4.26(d, J=8.3, \mathrm{H}-\mathrm{C}(3)) ; 4.15(d, J=11.9), 4.34\left(d, J=11.9, \mathrm{PhCH}_{2}\right)\right) ; 4.52$ $\left.\left.(d, J=11.5), 4.78\left(d, J=11.5, \mathrm{PhCH}_{2}\right)\right) ; 4.83(d, J=11.4), 5.50\left(d, J=11.4, \mathrm{PhCH}_{2}\right)\right) ; 7.01-7.18(m, 19$ arom. H$) ;$ $7.24-7.27$ ($\mathrm{m}, 4$ arom. H); $7.54(d, J=7.0,2$ arom. H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 48.13(t) ; 58.90(d) ; 67.64(t) ; 72.39$ $(t) ; 73.18(t) ; 74.00(t) ; 74.50(t) ; 77.07(d) ; 78.48(d) ; 81.94(d) ; 127.39-128.52$ (several d); $136.69(s) ; 137.43$ (s); $137.68(s) ; 138.17(s, 2 \mathrm{C}) ; 169.93(s) . \mathrm{Cl}-\mathrm{MS}\left(\mathrm{NH}_{3}\right): 630(9), 629(42), 628\left(100,[M+\mathrm{H}]^{+}\right), 538(6), 102(9)$. Anal. calc. for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{NO}_{5}$ (627.78): C 78.44, H 6.58, N 2.23; found: C 78.37, H 6.55, N 2.08.

Data of 10: Syrup. $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 1: 2\right) 0.37 .[\alpha]_{\mathrm{D}}^{25}=+62.4\left(c=2.30, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3060 w, 3000 w$, $2920 w, 2860 w, 2110 w, 1900 w, 1750 w, 1670 \mathrm{~m}, 1635 \mathrm{~s}, 1610 w(\mathrm{sh}), 1530 w, 1500 w, 1470 w, 1455 \mathrm{~m}, 1360 \mathrm{w}$, $1320 w, 1310 w, 1255 m, 1235 m, 1200 w, 1180 w, 1085 m, 1055 m, 1030 m, 985 w, 905 w, 815 w, 695 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): 3.33(t, J \approx 8.9, \mathrm{CH}-\mathrm{C}(6)) ; 3.43(d d, J=9.6,5.1, \mathrm{CH}-\mathrm{C}(6)) ; 3.79(d d t, J=8.7,5.7,1.2, \mathrm{H}-\mathrm{C}(6)) ; 4.08$ ($d, J=15.0$), $5.33\left(d, J=15.0, \mathrm{PhCH}_{2} \mathrm{~N}\right) ; 4.11(d d, J=6.8,1.4, \mathrm{H}-\mathrm{C}(5)) ; 4.19\left(s, \mathrm{PhCH}_{2}\right) ; 4.35(d, J=12.0), 4.41$ $\left(d, J=12.0, \mathrm{PhCH}_{2}\right) ; 4.86(d . J=12.2), 4.92\left(d, J=12.2, \mathrm{PhCH}_{2}\right) ; 5.34(d d, J=6.8,1.1, \mathrm{H}-\mathrm{C}(4)) ; 7.10-7.44(m$, 20 arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 48.73(t) ; 57.47(d) ; 68.43(t) ; 68.91(d) ; 69.26(t) ; 69.98(t) ; 73.19(t) ; 101.76$ (d); 127.24-128.4 (several d); $135.75(s) ; 136.75(s) ; 137.43(s) ; 137.79(s) ; 149.16(s) ; 159.42(s) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right)$: 537 (7, $\left[M+\mathrm{NH}_{4}{ }^{+}\right), 521(33), 520\left(89,[M+\mathrm{H}]^{+}\right), 447(6), 445(6), 430(13), 414$ (6), 413 (10), 412 (33, $\left.[M-\mathrm{BnOH}+\mathrm{H}]^{+}\right), 380(17), 339(19), 322$ (100), 292 (14). Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{NO}_{4}$ (519.64): C 78.59, H 6.40, N 2.70; found C 78.32, H 6.67, N 2.45 .

We thank the Swiss National Science Foundation and F. Hoffmann-La Roche AG, Basle, for generous support.

REFERENCES

[1] Jpn. Kokai Tokkyo Koho, 80,105,666 to Nippon Shinyaku Co. (CA: 1981, 94, 103174e).
[2] H. S. Overkleeft, J. van Wiltenburg, U. K. Pandit, Tetrahedron Lett. 1993, 34, 2527.
[3] S. Inouye, T. Tsuruoka, T. Ito, T. Niida, Tetrahedron 1968, 23, 2125.
[4] G. W. J. Fleet, N. G. Ramsden, N. M. Carpenter, S. Petursson, R. T. Aplin, Tetrahedron Lett. 1990, 31, 405.
[5] M. E. Tate, C. T. Bishop, Can. J. Chem. 1963, 41, 1801.
[6] H. Kuzuhara, H. G. Fletcher, J. Org. Chem. 1967, 32, 2531.
[7] N. Pravdic, B. Danilov, H. G. Fletcher, Carbohydr. Res. 1974, 36, 167.
$[8]$ A. J. Mancuso, S.-L. Huang, D. Swern, J. Org. Chem. 1978, 43, 2480.
[9] K. Dax, B. Gaigg, V. Grassberger, B. Kölblinger, A. E. Stütz, J. Carbohydr. Chem. 1990, 9, 479.
[10] J. R. Parikh, W. v. E. Doering, J. Am. Chem. Soc. 1967, 89, 5505.
$[11]$ M. D. Lewis, J. K. Cha, Y. Kishi, J. Am. Chem. Soc. 1982, 104, 4976.
[12] S. Czemecki, M.-C. Perlat, J. Org. Chem. 1991, 56, 6289.
[13] P. Petrzilka, D. Felix, A. Eschenmoser, Helv. Chim. Acta 1973, 56, 2950.
[14] G. W. J. Fleet, N. M. Carpenter, S. Petursson, N. G. Ramsden, Tetrahedron Lett. 1990, 31, 409.
[15] Ph. Ermert, A. Vasella, Helv. Chim. Acta 1991, 74, 2043.
[16] S. Hanessian, A. Ugolini, Carbohydr. Res. 1984, I30, 261.

[^0]: ${ }^{1}$) Present address: Laboratorium für Organische Chemie, ETH-Zentrum, Universitätsstrasse 16, CH-8092 Zürich.

